Closing Wed: HW_6A, 7A (7.5/7.7, 7.8)
Exam 2 is Thursday: 6.3-6.5, 7.1-7.5, 7.7, 7.8 $\operatorname{Try} u=\sqrt{x}, u=$ inside, $u=e^{x}, u=$ trig. Know essential toolbox of trig facts, such as $\tan (x)=\frac{\sin (x)}{\cos (x)}, \sec (x)=\frac{1}{\cos (x)}$. square identities, half-angle.

3. Improper Integrals:

a) Rewrite as a limit!!
b) Integrate
c) Take limit

4. Trapezoid/Simpson Rules

a) Set up integral, then compute width and label tickmarks.
b) Use formula.

Part Frac: $\frac{x+2}{(x-1)(x-3)}, \frac{4 x}{(x-1)^{2}(x-3)}, \frac{5}{x\left(x^{2}+4\right)}$,

$$
\frac{x^{2}}{x+7}, \frac{x-3}{x^{2}+8 x+20}
$$

Random Integrals from Old Finals:

1. $\int \frac{1-x}{\sqrt{1-x^{2}}} d x$
2. $\int \frac{x^{2}-x+8}{x^{3}+4 x} d x$
3. $\int 2 x \ln (x+5) d x$
4. $\int \cos ^{3}(x) d x$
5. $\int_{0}^{2} \frac{1}{\sqrt{x^{2}+2 x+4}} d x$
6. $\int_{1}^{3} \frac{1}{x^{2}+x^{3}} d x$
7. $\int \tan ^{2} x \sec ^{4}(x) d x$
8. $\int \frac{1}{(1+\sqrt{x})^{3}} d x$
9. $\int \sin (x) \sqrt{\cos (x)} d x$

Random Improper Integrals:

1. $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$
2. $\int_{-3}^{\infty} x e^{-x} d x$
3. $\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x$

Approximation:

1. Use Simpson's Method with $\mathrm{n}=4$
subdivision to approximate the value of

$$
\int_{0}^{4} \sqrt{1+4 x^{4}} d x
$$

5. New Applications

a) Volumes of Revolution
$\mathrm{V}=\int_{a}^{b} 2 \pi$ (Radius)(Height)(Thickness)
$\mathrm{V}=\int_{a}^{b}\left(\pi(\text { Outer } R)^{2}-\pi(\text { Outer } R)^{2}\right)($ Thick $)$
b) Average value $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
c) Work $=\int_{a}^{b}($ Force $)($ Dist $)$
(i) If $f(x)=$ "force formula at x ",
(Spring, leaky bucket, ...)
then
Force $=\mathrm{f}(\mathrm{x})$, Dist $=\Delta \mathrm{x}$:
Work $=\int_{a}^{b} f(x) d x$
(ii) Chain/Cable: $\mathrm{k}=$ force/length

If you label top: $x=0$, then
Force $=\mathrm{k} \Delta \mathrm{x}$, Dist $=\mathrm{x}$,
Work $=\int_{a}^{b} k \mathrm{x} d x$
(iii) Pumping: $\mathrm{k}=$ force/volume

If bottom is $y=0$ and top is $y=b$,

$$
\begin{aligned}
& \text { Force }=\mathrm{k}(\text { Area }) \Delta \mathrm{y}, \text { Dist }=\mathrm{b}-\mathrm{y} \\
& \text { Work }=\int_{a}^{b} k(\text { Area })(b-y) d y
\end{aligned}
$$

Applications from old tests:

1. Consider the region bounded by $y=\sqrt{x}$, the horizontal line $y=2$, and the y-axis.
(a) Find the volume obtained by rotating about the x-axis.
(b) Find the volume obtained by rotating about the horizontal line $y=5$.
2. Find the average value of $\cos ^{3}(x)$ on the interval 0 to $\pi / 2$.
3. A spring has natural length of 30 cm from the wall. It requires 2 J of work to stretch it from 40 cm to 45 cm (from the wall). How far beyond its natural length will a force of 64 N keep the spring stretched?
4. A 1600 lb elevator is suspended by a 200 ft cable that weighs $10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft ?
5. A rope is used to pull a bucket full of water up from a well that is 10 m deep. The rope has a total mass of 5 kg . The bucket has a mass of 11 kg . Find the total work done in lifting the bucket to the top (Recall: Accel. due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
6. A well is in the shape of a cylinder of radius 1 meter and depth 8 meters. It is half full of water. Find the word to pump all the water to the top. (Recall: Water weighs $9800 \mathrm{~N} / \mathrm{m}^{3}$)
7. The portion of the graph $y=x^{2} / 9$ between $x=0$ and $x=3$ is rotated about the y-axis to form a container. The container is full of a liquid that has density $100 \mathrm{lbs} / \mathrm{ft}^{3}$. Find the work required to pump all the liquid to the top of the container.
